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1. Introduction 

The department Werk, Participatie & Inkomen (WPI) is responsible for welfare benefits in the 

gemeente (“uitkeringen”). This project focuses on the application process for those uitkeringen. More 

specifically, we aim to provide a risk score for incoming applications, that can help to determine if an 

application should be investigated in detail, or only screened shortly. 

More background information can be found in the non-technical documentation. 
 

 

2. Terminology & working process 

WPI is the department with whom we are doing the project. 

Uitkeringen are welfare benefits. Although WPI is responsible for many types, the scope of this project 

is regular uitkeringen for people aged 27+. The person receiving the uitkering is often called klant. 

The inkomensconsulent (IC) is currently the first person who looks at an application for an uitkering 

and is responsible for granting (toekennen) or rejecting (afwijzen) the application. To do so, they carry 

out a screening, which takes approximately 2-3 hours. 

If an application looks suspicious to the ICer for whatever reason, they can scale up to a 

handhavingsspecialist/handhaver (HH). This person carries out a more thorough investigation 

(handhavingsonderzoek) that takes around two days and sometimes includes a house visit. After their 

investigation, the handhaver gives an advice to the inkomensconsulent about whether to reject the 

application (afwijzen), grant it without changes (geen wijziging) or grant it with changes (wijziging). 

The inkomensconsulent then makes the final decision, which is generally in line with the advice, but it 

may differ. In the data, an investigation by handhaving is called a proces. 

The klantmanager is the person who manages contact with the klant for the duration of their uitkering 

and aims to help them find work or education. This role is not as relevant for the project as the other 

two. 

A product is a type of benefit that the municipality offers. Some of those are paid out in intervals for 

a longer period, whereas others are a one-off payment. Each product has a product number that 

identifies it. An instance of a specific product received (or applied for) by a specific person during a 

specific period of time is called a dienst. 



Many of the decisions in this document were made based on input from the werkgroep, a selection 

of handhavers and inkomensconsulenten (and sometimes others) who helped with the interpretation 

of data and generally provided a lot of immensely useful insights about their work. 

 

 

3. Source systems 

We get data from three systems in use at WPI. 

1. Socrates: Used (mainly) by the inkomensconsulenten. It contains information about people, 

their uitkeringen/applications, relations to other people, income, address, etc. 

2. Sherlock: Used by the handhavers. It contains information about the onderzoeken. 

3. RAAK: Used by the klantmanagers. It contains information about contact with klanten, their 

work experience, education, etc. 

The sensitive data that could be hashed without losing important information for the model, has been 

hashed using SHA256 and a salt value. Since for the correct functioning of the model we need the 

same start-values to be mapped to the same hashed value, instead of using the salt with the password, 

we concatenate it to the value itself. This allows to resist dictionary-based attacks and keep the 

consistency. 

The data used for model training has been hashed in the VAO and uploaded to Azure. The production 

data is being hashed by team DASO and provided to the model through an API. What exact data is 

hashed is described in the WPD. 

 

 

4. Dataset 

4.1. Scope 

Applications are taken from the Socrates table Dienst. Included in the dataset are applications made 

between January 1st, 2015 and November 2nd, 2020. The end date is limited by the provided data 

dump. The start date of the dataset was decided together with the business; it’s within the legal 

retention period, provided us with a reasonable amount of data for development, and the data is 

assumed to be similar enough to applications nowadays. Like humans, data grows older by the day, 

so setting a hard limit on how long we can look back is difficult. Therefore, we agreed to handle this 

pragmatically: The pilot is done with the model based on the dataset as described, and this dataset 

will be updated when the model next gets retrained, so that it includes newer data and excludes data 

that has gotten too old (more than 5 years ago). 

Furthermore, we only consider applications for the relevant (as determined by the business) product 
numbers, which are 131 (Wwb/LO), 135 (Wwb/EV), and 227 (krediethypotheek). Other product 
numbers are excluded, because it’s important that the products are similar enough, so that the same 

legislation applies and by extension the same justification for (not) using certain features. 

Also excluded are applications from special groups (Bijzondere Doelgroepen), such as homeless 
people, because they are handled by separate teams. Most can be identified by their address, because 



many of them are registered in the system on a municipality address1. If they’ve been investigated by 
HH before, the team that investigated them is another indicator. 

The corona period is included in the dataset after two considerations. First, products that only existed 
during the corona period are automatically excluded since their product number is not selected. 
Second, for the rest of the data, we performed an analysis to understand if the data in this period 

behaved substantially differently, concluding that this is not the case. 

The applications that remain after these filters can be divided into three groups based on how they 
were handled: 

1. Applications that were only screened by IC (we will refer to those simply as ‘screenings’). 

2. Applications that were screened by IC and subsequently investigated by HH (we will refer to 
those simply as ‘investigations’). 

3. Applications that were only screened by HH; this is a special category that occurred during the 

corona period, because the department was flooded with applications and handhaving 

stepped in to help with the screenings (we will refer to those as ‘screenings by handhaving’). 

 
Most applications fall into group 1, because the capacity for investigations is limited, so group 2 is not 

very big. In the end, we decided to limit the dataset only to group 2, so the applications investigated 

by HH. This unfortunately reduced the size of the dataset by a lot, but it proved difficult to determine 

a reliable enough label for applications that were only screened – see for more details the section 

‘Label’. 

This reduces the representativeness of the dataset, in the sense that we expect (and saw this 

confirmed in the pre-pilot) that the model will produce higher scores on average on the train datasets 

than in production. This, because the train dataset contains only investigations, and investigated 

applications are, by definition, more ‘suspicious’ than the average application. However, we can 

correct for this by adjusting the classification threshold. Moreover, we think that the negative impact 

of having shaky labels is worse than the impact of using a smaller/slightly less representative dataset. 

 

4.2. Content 

The BI team of WPI provided us with 28 tables from Socrates, 41 tables from Sherlock and 9 tables 

from RAAK. These are not all the tables that exist in those systems, nor were all of them incorporated 

in the model. The file Overzicht Verwerkte Data en Features.xlsx provides an overview of the data that 

was incorporated. An entity-relationship diagram of (the majority of) the tables, created by team 

Advanced Analytics, can be found on the Sharepoint. 

Some of the tables contain numerical codes representing strings. The meaning of those codes can be 

found in one of the reference tables (Socrates) or sys tables (Sherlock). 

 
 

4.3. Data quality 

We first analyzed the quality of the raw data, and then did some more sanity checks (min/max 

values, outliers, missing values) on the features (see Section 5). A few issues are worth mentioning: 

 
1 The exact addresses were specified by Handhavingsspecialisten. We also reverse checked some addresses 
with them that we found in the data with suspiciously many people. 



• In the working process, definitions and work instructions are not always clear, sometimes 

leading to inconsistent interpretations and use of columns, categories, etcetera. We handled 

this by including a broad (in number and in expertise) group of people in our efforts to 

understand the data. In some cases, this led to not using a column. 

• Some columns contain old values that are not possible anymore due to changes in the 

working process or the law, for example types of uitkeringen that don’t exist anymore. 

Where relevant, we discussed with the business if those old values should be treated the 

same as some other values, or if we should exclude them completely. 

• Some of the systems keep a history, which shows that sometimes mistakes are made while 

entering data that get corrected shortly after. We’re able to filter those mistakes out. 

• The formatting of data is not consistent - not between systems, not between columns within 

the same system, and not even always within a column. This goes in particular for date 

columns, but also for some categorical columns, for example when the same category is 

present both with and without a full stop at the end. Such issues were fixed manually and 

automatically during the ingestion of the data. 

• Some columns are abused to register other information than what the columns is for. This is 

not an issue, because they are all free text fields that we don’t use anyway for privacy 

reasons. 

• Some data that exists in one system does not exist in another, although that would be 

expected. This is not on a large scale. 

Other points of attention such as completeness and duplication show no serious problems. Topics 

such as representativeness and biases were analyzed in a bias analysis, the results of which are 

described separately in the bias analysis documentation. 

It’s possible that a small number of data issues still remains in the dataset. Machine learning focuses 

on learning general patterns in data that are also valid for the future. Rare data does not 

substantially influence those kinds of general patterns. Hence, we expect that this does not pose a 

problem for the model, because we assume the number of remaining issues is limited. 

In general, it’s good to note that no formal documentation on the data is available, meaning we 

were highly dependent on the knowledge of colleagues in the organization to interpret the data 

correctly. The project's Sharepoint contains an Excel datavragen.xlsx with questions about the data 

(interpretation of fields, missing values, etc.) and the answers we gathered. 

 

 
4.4. Other notes 

Subjectnr 

Note that the subject number can refer to a person, but also to an organization or to a partij (see 

below). For instance, organizations offering help/work/education to people that are on welfare. 

Partij vs. persoon 

Eligibility for welfare depends not just on the applicant themselves, but also on their partner or 

whoever else they may share costs with. This information who shares costs with whom (‘gezamenlijke 

huishouding’) is also registered in Socrates and it’s called a partij. Everyone is part of a partij, so even 

if you’re not sharing costs with anyone, you’ll be in Socrates as part of a 1-person partij. A partij thus 

consists of 1 main client (‘hoofdklant’), and potentially one other person, whom we’ll call the 



secondary client. The main client is the person who applied for the welfare. The table Partij tells you 

which people are in which partij. 

In the table Dienst, diensten can be looked up only by subject number of the main client. In the table 

Dienstsubject, diensten can be looked up for the partij and for the main client. Therefore, be aware 

that in Dienstsubject, the subject number is not that of a person, but that of a partij. 
 

This also means that if we want to get a complete picture of all the diensten that a person is receiving, 

either as main or as secondary client, we need to combine Dienst (to get the diensten where the 

person is the main client) and Dienstsubject (to get the diensten where the person is the secondary 

client). 

 
 
 

5. Features 

5.1. General 

Features are based mostly on the information in Socrates and RAAK, and some Sherlock. They are 

partly inspired by indicators that the werkgroep told us, and partly by what was possible with the data 

we were given. An overview of all the features and the data that feeds into them is part of the 

documentation (Overzicht Verwerkte Data en Features.xlsx). 

 
 

5.2. Filtering relevant rows 

Depending on the type, a feature is calculated either as a snapshot at the time of the application (e.g., 

number of active addresses), or looking back over the year preceding the application (e.g. percentage 

of ‘deelnames’ started over the past year). We go back at most one year for two reasons: First, so that 

the information is not too outdated at the time of the application. Second, out of ethical 

considerations; the past should at some point be the past. We checked the effect of looking back two 

or even three years, but that didn’t improve performance or even reduced it. 

All the tables in Socrates, and some others, keep a history of facts by keeping old rows in the database, 

even as rows with newer information are added and displayed in the application. This means that to 

create the dataset, we must filter the rows on the information that was applicable, valid, and known 

at the time of the application: 

• Applicable means the most current entry or everything not older than 1 year. 

• Valid means the row should not have been invalidated. 

• Known means it should have been present in the system at the time of interest. 

Keep in mind that for a representative dataset, the time of interest is the application date (at least 

roughly, see below), so all three criteria should be checked relative to that, not to today’s date. We 

call this the reference date. 

Our experiments suggest that the closer you get to the decision date, the better the model performs, 

presumably because more and/or better information is available, because an IC or HH has already 

worked on the application. We tested that by comparing the performance when using (in order from 

early to later in the process) the application date (dtaanvraag), first entry date (first_dtopvoer), 



investigation start date (pro_startdatum), and final decision date (dtopvoer). Currently, the model 

runs at most one day after an application enters the system, therefore the reference date is 

first_dtopvoer. It doesn’t make sense to run the model later in the process, because its goal is to sort 

work between the IC and HH before anyone has checked the application. 

 
 

5.3. Outliers 

There are outliers present in the features. The most prominent is in the year of birth, the oldest being 

the year 1800. We decided to replace everything before 1905 by the average year of birth in the 

dataset. This cutoff corresponds to the birth year of the oldest person ever in Amsterdam. 

Other outliers that we identified were: 

• total_vermogen had high negative and positive values 

• application_count_last_year had a maximum value of 33 

• relocation_count_last_year had a maximum value of 18 

• total_inkomen_netto had a maximum value of 100K 

None of those are 100% impossible, only improbable. Combining this with the fact that we use a tree- 

based algorithm, we decided to leave them be, since this algorithm type should be able to deal with 

outliers natively. 

 
 

5.4. Missing values 

We deal with missing feature values in various ways, depending on the meaning of the feature and 

the cause of missingness: 

• Some features are imputed using a high value that wouldn’t normally occur. This is the case 

for features counting the number of days since some event happened. Since the input 

dataframe gets filtered on a period of X days before the application, a missing value means 

that the event either never happened for the applicant or it happened longer than X days ago. 

Hence, imputing with a value higher than X makes sense. 

• Some features are imputed with zero, because missingness means that the indicator should 

be false. 

• Some features are imputed with the average or the median, assuming this will have the least 

impact on the model. The decision between average and median was taken by looking at the 

skewness of the distribution and, in some cases, trying both. 

Additionally, we create indicators of having been imputed for some features, if we think that the 

information being missing is meaningful in itself. 

 

 
5.5. Encoding categoricals 

Note that the final selection of features of the current model does not contain any categorical 

features, but we did experiment with how to process them best while developing the model. 



Our categorical data is generally not ordinal, which means it needs to be encoded in some way to be 

used by the model. Two particularities make this challenging. First, for some features there are 

categories with very few observations. Second, for some of the categorical data one 

person/application can belong to multiple categories, for example if one person had multiple 

appointments of different types in the past year. It was a challenge to feed this information to the 

model properly. In some cases, we experimented with a “summary string” of ones and zeros to 

indicate which categories were “active”. The downside is of course that this creates even more 

categories with even fewer observations per category. In most cases, we ended up processing the 

information with human knowledge, for instance by grouping categories logically or manually creating 

indicators that matched a business rule. 

The features that we kept as categorical are encoded using embeddings. A very basic neural network 

consisting of 1 embedding layer is trained directly on each categorical feature, with the label as target. 

The embeddings can then be used at predict time to position each category in a low-dimensional space 

that relates to the target values and to the other categories. The number of neurons in the embedding 

layer is dependent on the number of unique categories of the features: it’s the square root of the 

number of unique categories, rounded to the nearest integer. We found the embeddings to work best 

after experimenting with multiple alternatives, including: 

• One-hot/multiple-hot encoding: create an indicator column per category. This idea was 

dismissed for most features due to the large number of categories, which would cause the 

number of columns to explode. 

• Target encoding: replacing a category with the mean target value for that category. For the 

categories with very few observations we instead used the overall mean. 

• Bayesian target encoding: same as target encoding, but then with the mean implemented as 

the prior, which loses weight when there are more observations in a category. Therefore, the 

more observations, the more the encoding matches the mean of the category rather than the 

overall mean. 

Note that, if in a future round of development categorical features are included in the model, the 

question of interpretability deserves special attention, because embeddings are not naturally 

interpretable and it’s not a given that explanations like SHAP or EBM work well for them. 

 

 

6. Label 

6.1. Definition 

Goal of the model 

Defining the label is not straightforward. To assist with dividing incoming applications between IC and 
HH, the goal of the model is to identify onderzoekswaardigheid, i.e. the extent to which an 
investigation of the application would be beneficial. The idea is that those applications with the 

highest onderzoekswaardigheid should be sent to HH. Hence, the meaning of the label is: 

• 1 = ‘onderzoekswaardig’ 

• 0 = not ‘onderzoekswaardig’ 

It’s good to mention explicitly that this is something different than identifying which applications 

should be rejected or granted (with or without changes). Likewise, it’s different than training a model 

to mimic the decisions of IC to scale up to HH, in which case you’re unlikely to identify applications 



that should be scaled up but weren’t in the past. These two points are important, because both these 
labels could be based directly on the historical outcome/treatment of applications, whereas the 
onderzoekswaardigheid is something we have to deduce ourselves. 

Further complications come from the fact that we cannot be sure that the decisions made in the past 

were correct. This is the case especially for screenings, because they are shorter, and even more so 
for applications that were granted, because while rejections must be substantiated very well and may 
even be challenged in court, wrongful grants don’t get weeded out the same way. 

HH investigations 

According to the werkgroep, an investigation is useful if it results in an advice to reject the application 

or grant it with changes, so those cases are labeled as onderzoekswaardig. We expect that this label 
is fairly reliable, although there may be some pollution with applications that were very easy to decide 

on. For instance, if someone does not live in Amsterdam, they are never eligible for benefits here. 
Those applications should not be scaled up to HH, but if HH still gave an advice, which in most cases 
they do, we cannot tell them apart. 

IC screenings 

This section describes the considerations around a label for the IC screenings. We eventually decided 
to exclude IC screenings from the dataset, because we did not trust the label enough, so you may also 

skip this section. 

For IC screenings, the label is unclear. We considered three alternatives: 

1. Label all screenings negative. 
2. Label screenings with a rejection outcome as positive. 

3. Label all screenings negative for the training dataset (as in point 1 above), but evaluate 
performance on a different label where screenings with a rejection outcome are labeled 

positive (as in point 2 above). 

The logic of option 1 is that if an application wasn’t investigated in the past, then we think it indeed 

shouldn’t be investigated. This is very strict, since some applications maybe should have been scaled 

up but weren’t. This option results in a dataset with only 2.2% positive labels, which leads to problems 

when evaluating the model. The capacity of HH suffices to investigate around 9% of all applications 

that are made, so they intend to investigate the top 9% applications suggested by the model. With 

only 2.2% positive labels, however, this means that even if the model is doing perfectly, it will always 

select at least 6.8% useless applications to get to 9%. This again means that the maximum achievable 

precision is less than 25% (2.2 over 9). One could argue that then only 2.2% of the applications should 

be sent to HH, but the business strongly expects the true percentage of ‘onderzoekswaardigheid’ to 

be higher. That expectation is supported by the baseline measurements of the working process, which 

show that a precision of around 50% is currently already attained. Hence, it’s not possible to compare 

the model to the baseline with this label. 

In option 2 we label screened rejections as positive, because if HH advises a rejection, that counts as 

a useful investigation. However, the rejections will also include some of the easy rejections described 

above. These kinds of applications should not be scaled up, but there is no way to distinguish between 

the ‘easy’ (should be sent to IC) and the ‘hard’ (should be sent to HH) rejections. 

In option 3 we train our model with all screenings labeled negative, but evaluate it on a different label, 

where all screened rejections are labeled positive. The logic is that this way, it becomes more sensible 



to compare the model to the baseline measurements, and the model looks promising. However, this 

label also cannot really be trusted for the reasons already laid out. 

Therefore, we eventually decided to include only investigations and screenings by HH in the dataset 

and leave out the screenings by IC completely. This way the dataset contains only applications with a 

fairly reliable label. 

HH screenings 

This section describes the considerations around a label for the HH screenings. We eventually 
decided to exclude HH screenings from the dataset, so you may also skip this section. We did not 
trust the labels enough, since the working process that generated them was a substantial deviation 
from the normal process. 

We have a different way to determine the label for screenings by HH. This is based on the concept of 

‘VPO’ (Vervroegd Periodiek Onderzoek), where a HH screening receives a positive label if the 
application was put on VPO, and a negative label if it was not. Setting an application to VPO means 

granting the application and setting a future date at which the person should be re-investigated. This 
normally happens if something seems off, but it cannot be proven. During corona, this happened a 
lot, because it was impossible to go on house visits. Therefore, setting an application to VPO is 

actually really close to our concept of onderzoekswaardigheid. 

 

 

6.2. Implementation 

Handhaving advice 

The source for the label is Sherlock. The advice given by HH after an investigation (‘afboekcode’) is 
found as a numerical code in the Proces table, column srp_id. The meaning of the codes is found in 

the table Sys_procesresultaat. The werkgroep helped us divide them into what should become a 
positive or negative label along the lines of reject/change/grant described earlier, or what should be 

filtered out completely, because we cannot tell. The latter is the case for instance when an application 
wasn’t transferred properly from IC to HH, so they sent it back. 

Linking investigations to applications 

To make the codes into a label, the investigation must be linked to an application. Unfortunately, no 

direct link exists between applications/diensten and investigations. This, because it’s never a specific 

dienst that’s being investigated, but rather a person and the whole package of diensten they’re 

receiving. This makes sense, because receiving one dienst can influence eligibility for another, so they 

cannot be investigated separately. Hence, we need to match investigations with applications using a 
rule of thumb. This rule of thumb was advised to us by Functioneel Beheer of Sherlock. In their 

experience, it’s possible to match around 95% of investigations to an application in the following way. 

First, the Proces table is filtered on investigations done at application time. This is indicated by the 

spr_id equal to 146 (‘C Aanvraag’), as seen in the Sys_proces table. Second, the rule of thumb is 

applied: If a person was investigated within 14 days after their application was entered into the 

system, then the investigation was probably a result of that application. The entry date (dtopvoer) can 

lie after the application date (dtaanvraag), because some applications are still made on paper and 

entered into the system manually. It’s used instead of the application date, because no one will start 

processing the application before it’s been entered into the system. 



There’s a further complication to the rule of thumb, because it requires the original entry date of a 

dienst, since that is when the application was entered. However, the entry date in the Dienst table 

gets overwritten each time the dienst is updated, for example once a decision has been made. For this 

reason, the original entry date must be retrieved elsewhere. It can be found in the table 

Werkopdracht, which contains tasks for staff, including an automatically created task to process each 

new application. Its entry date is assumed to roughly match the original application entry date. 

Determining how application was handled 

IC screenings are identified by looking if a pro_id is linked to the application, because if there’s none, 

it means no process belongs to it, which in turn means that HH was not involved. 

HH screenings are identified by checking that an application does have a pro_id, and either: 

• The process started between 23-03-2020 and 16-07-2020, the logic being that due to corona 

madness in this period all processes should be assumed screenings. 
 

or 

• The reason for the process was ‘Aanvraag screening’, the logic being that after 16-07-2020 

this process reason was added with the purpose of tracking screenings by HH. 
 

HH investigations are identified by checking that an application has a pro_id, but it doesn’t match the 

criteria for the HH screenings. 

Determining VPO 

When setting an application to VPO, the employee can select at what date the re-investigation should 

take place. Whether or not an application was set to VPO can be determined by checking if the field 

with this date is filled. The relevant field is pon_hercontroledatum from Sherlock’s 

Processtap_onderzoek table. 

Result 

For quite some applications that involved HH, around 2,000 out of 5,500, no label could be determined 

for various reasons. These applications are removed from the dataset. By far the largest chunk is 

because HH advised a ‘hersteltermijn’, which means to give the applicant another chance to submit 
additional information. In such cases, we can’t tell whether it was good that the application was sent 

to HH. If the applicant submits the requested information and IC sends the application to HH once 
more, then the application will still show up in our dataset. If IC handles it themselves, then it won’t 

be in our dataset. 

The final dataset consists of some 3,400 applications. Roughly 55% have a positive label. 
 

 

7. Model 

7.1. Algorithm 

The final algorithm is an Explainable Boosting Machine (EBM) without interactions to increase 

explainability. It’s trained on 85% of the applications in the dataset and tested on the remaining 

15%. The hyperparameter tuning and the model evaluation is done with a stratified k-fold cross- 

https://interpret.ml/docs/ebm.html


validation grid search over 4 folds, using random seeds where necessary to make training runs 

reproducible. 

The ROC AUC was used as the cross-validation metric (see next section for motivation). We checked 

the difference between train and validation set for each fold to identify overfitting. This was 

acceptable. We also checked the standard deviation of the ROC AUC between the folds to determine 

the stability of the model. The standard deviation was low (0.01), indicating that the model is stable. 

The precise parameter grid with the values can be found in the repository, but the main 

hyperparameters that have been tuned are the following: 

• learning_rate: Learning rate for boosting. 

• max_leaves: Maximum leaf nodes used in boosting. 

• max_bins: Maximum number of bins per feature for pre-processing stage. 

• inner_bags: Number of inner bags. 

• max_rounds: Number of rounds for boosting. 

• min_samples_leaf: Minimum number of cases for tree splits used in boosting. 

They were selected by researching their purpose online with a focus on performance and preventing 

overfitting. 

The feature set is first decided using forward feature selection, then trimmed by leaving out any 

features that don’t contribute to the first 95% of cumulative feature importance. This way, the 

model is greatly simplified - roughly one-fifth of the features make the cut. This is yet another way to 

reduce overfitting, besides also improving explainability and reducing the impact on citizens’ privacy 

since less information is used. 

We’ve also experimented with Gradient Boosting (XGB) and Random Forest (RF) as alternative 

algorithms. Our main interest was to find the optimal tradeoff between performance and 

explainability of the predictions. Our hypothesis was that XGB would perform best due to its 

increased complexity, whereas EBM would be the most explainable, with RF sitting somewhere in 

between. The explainability advantage of the EBM comes from the fact that the explanation of a 

prediction can be read directly from the model coefficients, whereas for the RF and XGB this must be 

approximated using a technique such as SHAP. 

Table 1: Tradeoff between Gradient Boosting; Random Forest; and Explainable boosting machine. 
Please be advised that the precision listed at the time when the model was selected (January 2022) and as the model has 
been reweighted since is no longer up-to-date. 

 

 Explainable boosting 

machine (EBM) 

Random forest (RF) Gradient boosting (XGB) 

Explainability ++ + + 

Comprehensibility + +- - 

Precision 61,5% 63,9% 59,2% 

 

 

The conclusion of the experiments was that the RF performed best. This ruled out XGB immediately, 

because it’s not more explainable than a RF. The choice was then between the more explainable but 

slightly less performant EBM and the less explainable but more performant RF. It’s hard to 

understand or quantify precisely how much more trustworthy the explanations of the EBM are 

compared to the SHAP explanations of the RF. The business stakeholders then made the decision to 

go with the EBM, because they want to be as transparent as possible. 



7.2. Metrics 

Our main optimization criterion is the ROC AUC (Area under the ROC curve). Our data is a bit skewed 

(more negative than positive labels), and unlike other metrics, such as the accuracy, the AUC can be 

interpreted independently of the class distribution. Furthermore, the AUC is a good estimation of 

how well a model prioritizes applications for investigations: it can be interpreted as the probability 

that two randomly selected cases are ordered correctly (i.e., that an application which should be 

investigated has a higher score than an application which doesn’t have to be investigated). 

The AUC is calculated multiple times throughout the training and testing pipelines. 

1. To estimate the quality of candidate parameter sets during the grid search. 

2. To estimate the quality of the final model. This is done by calculating the AUC on the test 

data. 

Our main evaluation criterion is the precision (also called ‘hit rate’ in the business-related 

documentation). This metric is the closest to what’s measured in the business process, namely how 

many of the investigations by Handhaving had an impact on the outcome of the application, and 

more interpretable. This is interesting for two reasons: first, we want the capacity of Handhaving to 

be used as efficiently as possible, and second, investigations should be proportional: we don’t want 

to bother citizens with an investigation if it’s not necessary. The precision measures how many of 

the applications we select for Handhaving were indeed useful to investigate. 

 

 

7.3. Evaluation 

A portion (15%) of the data is kept aside as a test dataset. This is done in a stratified manner, so that 

the proportion of positive and negative labels in the train and test dataset are the same. Before 

splitting, the data is shuffled, so time order is not taken into account. This should not lead to data 

leakage (a.k.a. target leakage), because the features are created in such a way that only data that 

would be available at predict time is used, no data is used that links earlier and later applications by 

the same person, and no or only very few changes over time are expected. 

The AUC on the test set is around 0.63, the precision on the test set is 64%. It’s good to stress again 

that these figures are on a dataset that only contains HH investigations, no IC screenings. Since the 

HH investigations were in the past carried out after an IC forwarded the application due to 

irregularities, it’s probable that the distribution of the features and the label is different between the 

train/test set versus the actual population of applications that the model will encounter in practice. 

A pilot is therefore essential to evaluate the model more. 

The detailed statistics of the model can be found in the model statistics file. 
 

 

8. Implementation 

8.1. Way of working 



It’s technically enforced that merge requests can be merged only when one person other than the 

author has reviewed and approved them. Also, it’s not possible to push to the development or 

master branch directly. 

Best practices have been followed to create cleaner, more readable and efficient code, focusing on 

reusability, simplicity and maintainability. Internal packages were created to structure the project, 

perform the bias analysis and handle the Azure interaction. This isolates the project-related code 

from the structural code. 

The following pre-commit hooks have been used to ensure code quality: 

• Isort: sort imports alphabetically, and automatically separated into sections and by type. 

• Black: code formatter, makes code review faster by producing the smallest diffs possible. 

• Flake8: toolkit for checking your code base against coding style (PEP8), programming errors 

(like “library imported but unused” and “Undefined name”) and to check cyclomatic 

complexity. 

• Mypy: static type checker for Python that aims to combine the benefits of dynamic (or 

"duck") typing and static typing. 

The code is also checked by unit tests on the most complex and crucial parts, and the API has a 

healthcheck endpoint that is called periodically. This endpoint checks the availability of the data, of 

the endpoint itself, and the operationality of the model. These tests are performed automatically at 

every deployment, and in case of test failure the deployment is interrupted. 

The API furthermore contains data quality checks on the data received in the score endpoint, and on 

the response. 

When training the model, a markdown file with a model summary (some input data statistics, 

performance metrics, feature importances, et cetera) gets generated. This file is saved as an artifact 

with all registered models on Azure. 

 

 

8.2. Deployment 

The model is deployed on Azure. The input and output pipelines are maintained by Datateam 

Sociaal. For more information, please refer to the “architectuurnotitie”. 

The model output is a score between 0 and 1 for each application. The API response consists of: 

• The score 

• EBM native explanation of each individual prediction 

• Feature values 

• Version number of the model (referring to the model name and version as in AzureML) 

• Subject number of the applicant 

The output is shown to the end users in the Dataverkenner. 

On an infrastructure level, the following things get logged (standard based on the Azure building 

blocks of the CCC): 

• Which operations were done on which resources 

• Who initiated them 



• When this took place (date and time) 

• What the result of the operation was 

On the model/API level, we log: 

• API requests including date, time, source, response code, (request JSON, response JSON) 

• Deployments including the new model version 

• Start/completion time of various events in the scorer and preprocessor 

• Warning in case of missing input data 

 
 

9. Further documentation 

The code of the model can be found in the project’s Git repository on Azure. This also includes the 

code change history, a verbal changelog, and the project’s requirements in terms of 

software/packages. 

The bias analysis carried out on the data and the model is described in the bias analysis 

documentation. 
 

Information on the technical architecture of the model’s development and deployment can be found 

in the architectuurnotitie. 
 

The beheerplan documents how the model will be monitored and maintained. 


